End-user identity in Solid:
the interoperability problem space

Author: Ruben Verborgh, SolidLab, Ghent University — imec
Date created: 2022-12-06

Last updated: 2023-01-10

Version: v1.0.0

The Solid ecosystem uses a decentralized mechanism of WeblIDs to identify agents and to manage their
access control. As the number of participants in the ecosystem increases, the question of how to
manage a multitude and variety of WeblIDs becomes increasingly pressing. To this end, we performed
an assessment of the current state of end-user identity and the demands going forward. This
document examines the interoperability angle for personal identity within Solid, providing strict
technical as well as looser interpretations of the WebID concept, building upon these to outline the
problem space as well as directions for solutions. We discuss the necessity of a shared understanding,
and describe challenges including anonymity and pseudonymity, extending the identifier space, and
disambiguating different WebIDs and identity providers pertaining to the same end-users. We thereby
provide a blueprint for the work needed to mature the Solid ecosystem with regard to identity.

Current WeblIDs and their interpretation 2
Definition and possible technical interpretations 2
Common interpretations today 4
Current usage 5

Current interactions between WeblID actors 6
Core WeblID actors 6

WebID profile document hosting provider 6
Identity provider 6
Authentication-enabled storage and service providers 7
Common interactions today 7

Problem spaces and directions 8
Establishing an unambiguous understanding 8
Clear and accurate communication 9
Improved trust mechanisms 9
URIs and their resolvers 10
Anonymity and pseudonymity 1
Disambiguation of multiple WeblIDs 12

Acknowledgements 13

Current WebIDs and their interpretation

Definition and possible technical interpretations

The overall working definition states that a WebID is an HTTP(S) URL uniquely identifying an agent.
We observe that the meaning of “identifying”, however, depends on the specific context of its usage.
Different interpretations consider other, sometimes simultaneous and/or conflicting, angles:

From a text angle, because HTTP URLs are text strings, a WeblID is a string as well. Therefore, in
the most narrow interpretation, the WeblID for a certain agent should only be interpreted as
the series of characters, not as the agent it points to, nor as the document that possibly results
from passing the URL to an HTTP client.

o

Example:
https://sophie.example/#me
could be a WeblD, and it consists of 26 characters.

It is impossible to tell given only the text string whether or not a given URL is a WebID;
that is, there are no structural constraints (even the hash # is optional).

We cannot derive from the form of the URI what agent it points to; only exact text
string equality may be used.

From a name angle, a WeblID being a URI means that it can be used to uniquely point to
a specific concept. Specifically, pointing to an agent (such as a person or piece of software) is
what differentiates a WebID from other URLs. Herein, “unique” means that each WebID
corresponds to only one agent; but each agent can and will have multiple WeblIDs as names,
i.e., there exists a one-to-many relationship between agents and WebIDs.

(0]

Example:

https://sophie.example/#me
https://abc.example/Pages/Other

could be names for a specific real-world person.

The current practice is to use WeblDs for agents, i.e., things that have agency. However,
they might also become used for more passive entities such as cars and buildings,
which are operated by an agent, i.e., agent-operated entities.

The process by which we establish the connection between a WeblID (text string) and
a real-world entity is purposely not uniformly defined or standardized. This parallels
similar questions on other parts of the Web, for instance, the extent to which a given
domain name or social media handle can be trusted to be an official representation of
a certain real-world entity.

Anyone can mint HTTP URLs and use them as (unapproved) WeblDs for any agent,
without their knowledge or consent. In fact, there exist an infinite number of WeblIDs as
names for any agent, only a small fraction of which they might be aware of, and an
even smaller fraction of which they might consider authoritative.

e From a data angle, a WebID being a URI means that we can employ it within RDF triples and
documents to express information about a real-world person or a software agent. The WeblID’s
name angle provides disambiguation with regard to the topic of the data. Note that this usage
of a WeblID is not necessarily authoritative; i.e., it does not express provenance or truth.

o Example:
<https://sophie.example/#me> ex:hasBirthDate "1981-02-03".
<https://sophie.example/#me> ex:hasBirthDate "1984-05-06".
<https://doc.example/1> ex:hasAuthor <https://sophie.example/#me>.
The deliberate inconsistency in birthdays shows that usage in data by itself does not
constitute an authoritative reference, nor sufficient evidence that the HTTP URL is in
fact a WebID or that the agent pointed to from the data is aware of or has agreed to
any statements mentioning this WeblD.

e From a locator angle, a WebID being an HTTP URL means that it may (and in fact should) point
to a WeblID profile document, which an HTTP client might be able to retrieve over HTTP.
This WeblID profile document, given the Linked Data principles and the data angle of a WeblID,
is expected to contain RDF data involving and/or related to the agent identified by that WeblD.

o If an agent deems a particular WeblID (URL) as authoritative for them, the expectation
is that they have (presumably exclusive) write access to the corresponding WebID
profile document that results from following this URL. However, there is no such
guarantee.

o Example: https://sophie.example/people/sophie#me might lead to a document
https://sophie.example/people/sophie containing RDF triples, some of which have
as a subject https://sophie.example/people/sophietime.

o Locators may irreparably break because of DNS reasons if the domain name ownership
changes. Like any URL, a WeblID is therefore a leased identifier for location purposes,
given that relatively few people have or control their own domain name.

e From an authentication angle, a WebID can be an outcome of an authentication process. That
is, an identity provider (IDP) generates a token by which an agent can support a claim towards
a third-party service that they are the agent identified by the given WebID.

o This mechanism requires establishing a certain degree of trust between the IDP and
the service. A current mechanism involves the locator and data angles, whereby the
WeblID profile document resulting from following the WebID (URL) explicitly marks
certain IDPs as trusted to make authentication claims about this particular WeblID.

o We also observe that people as human agents access Solid pods through applications,
so in addition to authenticating the agent with a WeblID, we also need to authenticate
the application, which currently happens with a Client ID. Application identity is out of
scope for this document.

We stress that these different angles for WeblIDs are, in theory, largely independent. However, as some
angles build upon others, we observe larger degrees of coupling in practice. Importantly, the existence
of these multiple angles means that any solutions for identity will probably need to consider or
address combinations of multiple angles simultaneously.

Common interpretations today

Notwithstanding the above technical interpretation, current practitioners and systems will typically
assume more meaning about a WebID than is strictly allowed. While such meaning might partially
correspond to reality in specific situations, it cannot be generalized.

Let us take the WeblID https://sophie.solidcommunity.example/profile/card#me as an example.
Technically permitted assumptions

e Without any further knowledge about the above text string.
o [I1tisan HTTP URL.
e When the URL dereferences to a document containing RDF, making some statement that
https://sophie.solidcommunity.example/profile/card#me is an agent.
o [AItis aWeblD.

Common assumptions (which might or might not be correct, so are not permitted in general)

? 1t is a WebID.

? It identifies a person.

? It identifies Sophie.

? It points to an RDF document.

? Sophie is aware of this WebID.

? Sophie is the one who created this WebID.
? Sophie is the one who manages this WebID.

? This is Sophie’s WeblID.

? This is Sophie’s only WebID.

? This is Sophie’s main WeblD.

? solidcommunity.example is an IDP for Sophie.

? solidcommunity.example is the only IDP for Sophie.

solidcommunity.example is the main IDP for Sophie.
https://sophie.solidcommunity.example/ is Sophie’s storage.
https://sophie.solidcommunity.example/ is Sophie’s only storage.
https://sophie.solidcommunity.example/ is Sophie’s main storage.

Basic profile information (name etc.) will be included in the WebID profile document.

? Sophie has read, write or control access to storages listed in the WeblID profile document.

*Nd °ND °N) o))

In particular, one common interpretation for a given WebID does not correspond to the notion of
“this agent” (as the data angle would prescribe), but rather to the more specific “this agent identified
in a given context” (currently not substantiated by any specification). For example, suppose we know
a person named Ira who uses https://ira.solidcommunity.example/profile/#me as a WeblD.
Some parties consider an authentication with https://ira.solidcommunity.example/profile/#me
to not indicate “Ira”, but rather an ill-defined “solidcommunity.example version of Ira”. These diverging
interpretations highlight the current conflict between the data and authentication angles of WeblDs,
where the data angle would consider Ira a real-world person rather than a more abstract contextual
identity. Furthermore, it confuses the trust in the name with the trust in a specific IDP this URL is
assumed to relate to (namely solidcommunity.example), for which there is no strict technical basis.

Current usage

WeblIDs for agents play a crucial role within Solid in different ways, making use of the aforementioned
angles. We distinguish the following, wherein we note that this document focuses on WeblIDs for
end-users specifically.

e WeblIDs for end-users

(e]

(e]

(e]

As part of authentication, WeblIDs serve as an identifier for an end-user.

WebIDs allow associating data with end-users in RDF documents.

WeblIDs allow associating access control rules with end-users. Given that Solid uses
RDF documents to define access control, this case is a specialization of the previous.
It hinges on the correct merging of the name, data, and authentication angles.

The WeblID profile document associated with the WebID allows applications to discover
information about the end-user, in particular their associated identity provider and
storage setup.

e WeblIDs for software agents and applications

o

Software agents are similar to end-users with regard to WeblD usage, as they always
act on behalf of an end-user. We distinguish interactive agents (operated in real-time
by an end-user) and autonomous agents (operated asynchronously).

A key difference is the authorization process, which cannot always happen in an
interactive way.

The analysis for the different angles of the WebID should be done for applications as
well, given that there is currently ambiguity as to what their identification by a specific
WeblID means. It could be the software package of the agent, a specific version of that
package, a specific deployment of a version, a specific deployment authorized for
a specific end-user, or an undefined combination of any of those. Therefore, some
concerns and solution directions for the disambiguation of end-user WeblIDs also
pertain to WeblIDs for applications.

Current interactions between WeblID actors

Core WeblID actors

WeblID profile document hosting provider

A WeblD profile document hosting provider is the party offering access to a WeblID profile document.

For instance, the WebID (a URL) https://sophie.solidcommunity.example/profile/card#me points
to the WebID profile document https://sophie.solidcommunity.example/profile/card, which can
be requested from the WebID profile document hosting provider sophie.solidcommunity.example.
Another WeblID could be https://dani.example/id and it could point to the WebID profile document
https://ids.example/dani/ through an HTTP redirect.

Identity provider

An identity provider (IDP) generates authentication tokens for agents. An agent can present this token
to third-party services to support a claim that it has a certain WebID as a name. The token separately
indicates the client application by a Client ID. The step-by-step reasoning for this process is as follows:

e AWeblID is a string.
The IDP is aware of a connection between such a string and an agent.
The IDP offers a (non-standardized) way for the agent to indicate who they are.
(For instance, the IDP might offer username/password or biometric authentication.)
In response to a successful indication, the IDP issues a token to the agent.
The agent uses this token to tell third-party services that this specific IDP vouches for the
correspondence of the string to this specific agent.
(For instance, the IDP might say “the bearer of this token is https://sophie.example/#me")
e The IDP might vouch for the stronger correspondence of this string to an actual entity.
(For instance, the IDP might imply that “this agent is Sophie”)

In contrast to the one-to-many relationship between agents and WeblIDs, there exists a many-to-many
relationship between WebIDs (URLs) and IDPs: a single WeblID can be authenticated by many IDPs, and
each IDP can authenticate many WeblIDs. In practice, IDPs tend to restrict themselves to WebIDs (URLs)
within a certain address range; for instance, those with a certain top-level domain.

Nonetheless, an infinite number of IDPs can exist for any given WeblID; however, only a very small
subset can be trusted. Concretely, a token stating that a specific IDP has authenticated a specific agent
with a given WeblD, by itself does not provide any more information beyond that statement. We must
consider it as an unknown agent sharing an IDP-signed but otherwise unverified opinion (“I can prove
that IDP x says that | am identified by WebID y”). The token can only gain a degree of credibility when
we establish the IDP can indeed be trusted as a reliable authenticator for that specific WeblID.

Therefore, whether or not a third-party service chooses to believe the agent’s WebID claim, is solely
based on trust in the IDP. For non-trusted IDPs (as is currently the majority of the network), trust might
be moved to the WebID profile document host instead. The trust is then established by the
standardized mention of that IDP in the WeblID profile document, which is assumed to imply that the
agent has write access to this document and hence is in control of the corresponding WebID.

Authentication-enabled storage and service providers

Authentication with a WebID provides a uniform identity layer to services, of which storage
(“Solid pods”) is an important class within the ecosystem. Rather than having to authenticate with
every service in the network, the Solid-OIDC mechanism provides a single sign-on, wherein agents are
identified by their WebID.

There exists a many-to-many relationship between WebIDs (URLs) and services; in particular, there
exists a many-to-many relationship between WebIDs and pods. So every WeblID can provide access to
multiple pods, and each pod can grant access to multiple WeblDs. Again, there can exist an infinite
number of pods and services that allow access to any given WebID.

It is common—but not mandatory—for the role of a WebID profile document host to be fulfilled by an
authentication-enabled storage provider. This means that the WebID profile document for an agent is
in practice often hosted on a Solid pod, which the agent would refer to as “(one of) their Solid pod(s)”.

Common interactions today

Despite the many-to-many relationships between WeblDs, IDPs, and pods, the current ecosystem tends
to combine them in specific ways, suggesting a more coupled interpretation than is prescribed by the
underlying technologies.

Currently, people tend to have one WeblID, which gives access to one pod, which also hosts the
corresponding WeblID profile document, and whose underlying server also acts as the IDP. For example,
situations such as the following are common—but by no means standardized or mandatory:

e Sophie uses the WebID https://sophie.solidcommunity.example/profile/card#me as
a name for herself, which she considers to be the only authoritative WeblID for her.

e The WebID profile document https://sophie.solidcommunity.example/profile/card is
stored on astorage service at https://sophie.solidcommunity.example/, which Sophie
thinks of as her only pod, to which she has read and write access.

e The HTTP server at https://sophie.solidcommunity.example/ also acts as Sophie’s IDP, and
she considers this IDP the only one that should be trusted to authenticate her with her WeblD.

However, given that the actual relationships are many-to-many, there will in fact be multiple WeblIDs
for Sophie, each of which can be authenticated by multiple IDPs, and each of which gives access to
multiple pods. Her WeblID profile document might or might not be hosted on a pod.

Problem spaces and directions

Establishing an unambiguous understanding

An important challenge is to ensure that all parties in the ecosystem have ashared and correct
understanding of what exactly a WeblD is and is not, and what it means and does not mean.

On the one hand, this is about correct application of the terms for a WeblID and its associated actors.
For instance, “WebID” is currently used in different contexts to either mean a URL, the document
identified by that URL, a person, a piece of software, or even the pod of which the agent identified by
this WeblID is deemed to be the owner. This impreciseness is not limited to colloquial usage, but is also
present in technical discussions, where it clouds the understanding of issues and potential solutions.

On the other hand, it is about agreeing on the exact semantics of a WeblID (URL). There exists an
important conflict in which a WebID from the data angle points to a specific person or other agent,
whereas from the authentication angle, the same WebID might be considered as an agent within
a specific context. The former interpretation is that the WebIDs (URLs) X, Y, and Z could all point to the
same person “Sophie” and can thus possibly be used interchangeably. The latter interpretation is that
those WebIDs (URLs) actually identify Sophie as authenticated by a certain IDP in a specific context,
such as “work Sophie (a doctor)” and “private Sophie (my neighbor)” and “Sophie authenticated by this
highly trusted IDP". This is akin to how a person might use different addresses for personal and
professional contexts, even though the recipient is always that same person.

These differences are not technical purisms, but on the contrary have practical relevance, especially
regarding trust. For instance, some services might be tempted to only allow access to specific kinds of
WebIDs, similar to how some services require specific email addresses to log on (such as a company or
institutional email address). Concretely, services might ask end-users to authenticate with a WebID of
specific form (such as https://trusted.gov.example/{hash}). When interpreting this request along
strictly technical lines, it is hard to understand the rationale, given that WebIDs are strings and that no
string is more special or secure than any other. However, in practice, the request is to be understood as
a requirement for the authentication process to meet certain security criteria, which arbitrary IDPs will
not satisfy. As such, the request is phrased in terms of a mandatory address space for WeblDs, which
so happen to share the characteristic that they can all be authenticated via a specific IDP with a certain
security level. However, that security resides in the IDP, not the identifier; in fact, many other IDPs also
provide a (less secure) authorization for the same WebID, which the service would need to distrust.
Furthermore, the trusted IDP could be extended with WeblIDs of different forms, similar to how people
can register a personal (unsecure) email address to receive notifications from more trusted services,
voiding the argument that the form of the WeblD serves as a reliable predictor for trustworthiness.

The bottomline is that different systems today treat WeblIDs as different things, thereby hindering
interoperability. Whereas some data systems treat WeblDs as a name for a person, other services treat
them as a combination of identity plus an indication of the trustworthiness of the authentication. One
possible solution is to be more explicit in the response from an identity provider, by not only returning
the WebID but also a proof of how the correspondence of the agent to the WeblID was established
(for instance, which specific multi-factor authentication was used to initiate the current session, after
a previous passport-based identity verification).

Clear and accurate communication

After aligning on ashared understanding of WeblDs, we need to find ways to communicate this
understanding to wider audiences with minimal loss of meaning. An angle to consider is the usage of
appropriate metaphors for WeblIDs and Solid in general, and in particular understanding what the
limitations of these metaphors are in different contexts. Below is a non-exhaustive list of examples:

e The identity card metaphor partly works, in the sense that a WeblID profile document tends to
contain some basic attributes about the agent it describes. However, WeblID profile documents
are not issued by an authority such as a government, meaning that they do not carry the same
identifying attributes (such as a photo and biometric attributes) nor the same trustworthiness
of the mentioned data (such as name and date of birth). Furthermore, it does not sufficiently
recognize the fact that people have multiple WeblDs (whereas relatively few people have
multiple identity cards), and that there can be multiple identity providers (whereas there is
typically one authoritative regional body for an identity card).

e The email address metaphor is partially helpful, in the sense that it acknowledges that people
use different email addresses for different occasions. This can for example be done for routing
purposes (professional and personal emails are checked at different times), or for anonymity
or pseudonymity (through so-called burner accounts). People can analogously have multiple
WeblDs, each of them pointing to the same person (similar to how a person eventually receives
the email sent to their different addresses). However, the comparison breaks at the moment
we consider the relationship between WeblIDs and pods, since one WebID gives access to
multiple pods, whereas each email address for a person tends to correspond to one mailbox.

e The access badge or key metaphor might help, given that different companies can issue access
badges, and they might provide access to different buildings and rooms (and differently for
different people). However, people tend to also carry different access badges and keys,
whereas a WebID would be able to act as a more uniform kind of key; so there would be no
necessity to mint a new WebID merely to access a new service.

Improved trust mechanisms

As discussed above, the current authentication method assumes trust in either the IDP, or in the WeblID
profile document host (which expresses its trust in the IDP). The absence of a trust authority is due to
the decentralized nature of authentication. A risk is that, in order for a service to establish a higher
degree of trust in the WeblID/agent correspondence, the service establishes closer trust relationships
with specific IDPs only, and hence possibly specific WeblIDs only. This would lead to siloization, where
certain services require people to choose certain IDPs, leading to an undesired proliferation of
authoritative WeblIDs and the associated management thereof.

On the one hand, we could establish independent trust in IDPs via standardized certification processes
(similar to how TLS certificates) to prove a certain level of security, or as part of a federated trust
process (such as OpenlD Federation) to prove mutual trust. Because of their complexity, certification
processes might remain limited to niche use cases, such as government identity. On the other hand,
the IDP could provide additional security guarantees in the token it issues to agents (such as the acr
claim in OIDC). As discussed above, this also removes implicit contextual meaning from the WebID.

URIs and their resolvers

The name/locator duality of a WeblID is based on the fact that it is an HTTP URL, which is both an
identifier and locator. Namely, each HTTP URL identifies a certain resource, and also contains the
instructions to locate a representation of that resource through the HTTP protocol. Therefore, if you
know a person’s WeblD, then you can dereference that WeblID by looking it up using the HTTP protocol,
which should lead to a document describing the corresponding agent.

On the one hand, the WebID mechanism conceptually has few dependencies on HTTP. All that matters
is that there exists a lookup function that leads from the (textual) WebID to a document describing the
agent that has this WebID as a name. However, even for HTTP URLs, we could imagine the creation of
different lookup functions beyond the standard GET-based lookup afforded by the HTTP protocol.
For instance, there might be a service accepting an HTTP URL and returning an associated document
generated using other means.

On the other hand, we could imagine authenticating with a WebID without any lookup functionality,
if we leverage alternative IDP trust mechanisms as discussed previously. A main purpose of the lookup
is indeed to establish an ad-hoc trust relationship for a particular WeblID between the service and
the IDP, but only in absence of a more sustainable trust relationship. Ultimately, an IDP’s task is to sign
a claim relating a certain identifier to a certain agent; whether or not this identifier is a WeblID, another
type of IRI, or another string altogether, is not a concern for the IDP itself. Lookup of that identifier is
not a necessity if the service has another way of assessing the trust in the IDP’s claim.

Both observations clearly pave the way for extending the URI space of WebIDs from HTTP URLs to
decentralized identifiers (DIDs). Similar to how HTTP URLs have HTTP as a resolver, each DID method
has its own type of resolver. A classic problem with building DID systems is the decision of which
DID methods to support, given that each requires its own implementation—and the list of methods is
still being extended. As such, the required number resolvers might be large, although they might be
run on federated infrastructure. However, such resolvers are only necessary when lookups are needed.
If, in contrast, trust between a service and an IDP can be established in different ways, then DIDs can
be treated as simple text strings as far as authorization is concerned.

Using DIDs could alleviate some problems inherent to the management of HTTP URLs (and thus
WeblIDs). One such problem is that people could lose control over the domain name of their WeblD,
and hence over the resolver function and thus the contents of the corresponding WebID profile
document. Another such problem is that, when deliberately moving domain names, a new WeblID
would need to be minted. Certain DID methods can minimize these risks as one of their purposes is to
provide different means of control over the resolver function, such that they are not tied to DNS.

10

Anonymity and pseudonymity

The high-level idea of Solid with WeblDs is the usage of identity as a token for being granted access.
Simply said, a person tells a service who they are using a WebID as a name, and then this service
decides to grant or deny access to them.

This contrasts with approaches such as Verifiable Credentials, where an agent will share one or more
data attributes in order to indicate its eligibility for a certain purpose, such as being granted access to
a certain resource in a storage location. Credentials might indicate, for instance, whether the agent is
older than 18, or whether they have a certain diploma or currently work for a certain employer. On an
abstract level, we could consider WeblIDs as a specific kind of credential: the attribute an agent is
sharing, is their WeblID. In that sense, the difference between Verificable Credentials and WebIDs is
gradient rather than a contrast. WeblIDs are typically more granular as authorization (because they
point to a specific agent), compared to the broader Verifiable Credentials that tend to identify a certain
class of agents (e.g., all people over 18 years old).

The current practice is indeed that the majority of WeblIDs lead to a uniquely identifiable agent,
by design. This might lead to the impression that Solid applications “always know who you are”, or that
Solid would signify the end of anonymity on the Internet. Such a conclusion would be counter to some
of the Solid aims, as Solid strives to enable data sharing in a privacy-friendly way—and mandatorily
sharing a highly granular identifier would introduce a contradiction.

Apart from using Verifiable Credentials—which should be investigated as a broader class of partial
identity sharing through attributes—we can leverage the one-to-many relationship of agents to their
WeblID. Basically, an agent can use different WeblIDs for different interactions, not unlike how password
managers support people in using different logins for every website.

Some of these WeblIDs could serve the purpose of an anonymous identity, e.g., they could be burner
accounts with the intention of never being traced back to a more widely known name of the agent.
Other WeblIDs could serve as a pseudonymous identity, e.g., they could be accounts with the intention
of a more widely known name only being revealed at a later point in time and/or to asmaller
audience. An anonymous identity becomes pseudonymous or public when the agent carrying the
anonymous WebID communicates the association with a more widely known WebID.

The management of anonymous and pseudonymous WeblIDs can be taken into consideration with the
management of multiple WeblIDs in general.

T

Disambiguation of multiple WebIDs

Finally, given that agents will have multiple WeblIDs, we need a strategy of dealing with this reality such
that agents can still have a unified experience across their WeblIDs. The first step is the aforementioned
unambiguous understanding of what a WebID is, and whether it indeed consistently identifies an agent
(as opposed to an agent within a specific authorization context). Furthermore, any disambiguation
needs to consider all of the angles of the technical interpretation, for each of which we provide initial
guidance below:

Text: On a textual level, we might want to establish whether certain identifiers are equivalent.
For instance, URLs might differ in protocol (http: or https:), or might have encoding
differences (%2f versus %2F); we need an explicit strategy to decide whether they are
consistently different or the same. The current consensus is to only allow textual equality.

Name: Of key importance is that equivalence of two or more WebIDs cannot be established
only unilaterally. Otherwise, we risk believing a malicious agent falsely claiming that one of its
WeblDs is equivalent to a WeblID of another agent. In the case of anonymity and pseudonymity,
a bidirectional declaration of some degree of equivalence might compromise the confidential
nature of that relationship. Furthermore, we need to carefully consider in what cases different
identifiers for the same agent can be used interchangeably, or when systems need to treat
equivalent identifiers as if corresponding to different agents.

Data: When different WeblDs (URLs) are used as names for the same agent in one or more data
documents, we want to establish the conditions under which they can be treated as the same.
On the one hand, this involves a strict understanding of whether the different WeblIDs are
exactly the same, or only contextually the same. For instance, the same person might be an
employee of one institution, but a student at another; the claims that the person is a student
or employee might or might not be simultaneously true in a given context. On the other hand,
we need to take into account anonymity and pseudonymity, in cases where the agent does not
want attributes from different contexts to be carried over, even if they describe the same
agent.

Locator: As far as the lookup function is concerned, we might want to investigate whether
different WebIDs could or should resolve to the same WeblID profile document, or to different
documents that are somehow interlinked with each other. Asolution path described in
a previous section is to reduce the reliance on resolvers and lookup functions altogether, which
also eases the transition to other kinds of identifiers beyond HTTP URLs.

Authentication: Different IDPs might have restrictions as to what WeblIDs they are willing to
provide authentication for, but might be willing to accommodate alternative WeblIDs for the
same agent. Separately, some authorization systems might refer to the agent by one WebID and
expect only that WebID as proof of identity, whereas other systems might be inclined to accept
any WeblD that corresponds to the agent in question. In any case, the symmetry conditions for
interchangeability must be satisfied before even attempting such resolutions.

In designing solutions, we must consider the applicability across interpretation angles. For instance,
it might become difficult if two WeblIDs are considered equal as far as data is concerned, but separate
for authentication; or perhaps this might be considered an advantage or necessity in other contexts.

12

Acknowledgements

This work is supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF project V023/10).
The author wishes to thank Digita (Tom Haegemans, Wouter Termont) and Digital Flanders (Laurens
Debackere) for reviews and discussions.

13

